No Feasible Monotone Interpolation for Cut-free Gentzen Type Propositional Calculus with Permutation Inference

نویسنده

  • Noriko H. Arai
چکیده

The feasible monotone interpolation method has been one of the main tools to prove the exponential lowerbounds for relatively weak propositional systems. In [2], we introduced a simple combinatorial reasoning system, GCNF+permutation, as a candidate for an automatizable, though powerful, propositional calculus. We show that the monotone interpolation method is not applicable to prove the superpolynomial lower bounds for GCNF+permutation. At the same time, we show that Cutting Planes, Hilbert's Nullstellensatz and the polynomial calculus do not p-simulate GCNF+permutation. keywords: automated theorem proving, proof complexity, Craig's interpolation theorem, proof theory

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tractability of Cut-Free Gentzen Type Propositional Calculus with Permutation Inference

In Arai (1996), we introduced a new inference rule called permutation to propositional calculus and showed that cut-free Gentzen system LK (GCNF) with permutation (1) satis es the feasible subformula property, and (2) proves pigeonhole principle and k-equipartition polynomially. In this paper, we survey more properties of our system. First, we prove that cut-free LK + permutation has polynomial...

متن کامل

No feasible monotone interpolation for simple combinatorial reasoning

The feasible monotone interpolation method has been one of the main tools to prove the exponential lower bounds for relatively weak propositional systems. In [1], we introduced a simple combinatorial reasoning system, GCNF+permutation, as a candidate for an automatizable, though powerful, propositional calculus. We show that the monotone interpolation method is not applicable to prove the super...

متن کامل

A Deductive System for PC(ID)

The logic FO(ID) uses ideas from the field of logic programming to extend first order logic with non-monotone inductive definitions. This paper studies a deductive inference method for PC(ID), its propositional fragment. We introduce a formal proof system based on the sequent calculus (Gentzen-style deductive system) for this logic. As PC(ID) is an integration of classical propositional logic a...

متن کامل

Interpolation Theorems, Lower Bounds for Proof Systems, and Independence Results for Bounded Arithmetic

A proof of the (propositional) Craig interpolation theorem for cut-free sequent calculus yields that a sequent with a cut-free proof (or with a proof with cut-formulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuit-size is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which...

متن کامل

Theorem Proving and Partial Proof Search for Intuitionistic Propositional Logic Using a Permutation-free Calculus with Loop Checking

Backwards proof search and theorem proving with the standard cut-free sequent calculus for the propositional fragment of intuitionistic logic, Gentzen’s LJ , is inefficient for three reasons. Firstly the proof search is not in general terminating, due to the possibility of looping. Secondly it will produce proofs which are essentially the same; they are permutations of each other, and correspon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007